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The interaction of two conical shock waves, one converging and straight and the
other diverging and curvilinear, in an axisymmetric flow was investigated both exper-
imentally and numerically. A double-loop hysteresis was discovered in the course of
the experimental investigation. The double-loop hysteresis consisted of a major one,
associated with the interaction between the boundary layer and the wave configura-
tion, and a minor one, associated with the dual-solution phenomenon, which is known
to be non-viscous-dependent. The minor hysteresis loop was found to be an internal
hysteresis loop of the major one. As expected the numerical Euler calculations failed
to detect the viscous-dependent major hysteresis loop but did succeed in obtaining
the non-viscous-dependent minor (internal) hysteresis loop. In addition, multiple hys-
teresis loops, associated with the interaction between the shock wave configuration
and the edge of the curvilinear mobile cone were also observed. The non-viscous
minor hysteresis loop involved different overall shock wave reflection configurations,
and the other hysteresis loops involved the same shock wave reflection configuration
but different flow patterns.

1. Introduction
Mach (1878) discovered experimentally that the reflection of oblique shock waves in

steady flows could result in two types of wave configurations, namely regular reflection
(RR) and Mach reflection (MR). Von Neumann (1945) suggested two extreme criteria
for the transition between these two types of wave configurations. They were later
named the detachment criterion and the von Neumann criterion. These two criteria
bound a domain inside which both the RR and the MR wave configurations are
theoretically possible. For this reason this domain was termed the dual-solution domain.
Hornung, Oertel & Sandeman (1979) were the first to hypothesize that the existence
of a dual-solution domain could lead to a hysteresis in the RR ↔ MR transition.
Chpoun et al. (1995) recorded experimentally for the first time a hysteresis in the
reflection of symmetric shock waves. Chpoun & Lengrand (1997) and Li, Chpoun &
Ben-Dor (1999) recently recorded a similar hysteresis in the reflection of asymmetric
shock waves.

In spite of the good to excellent agreement which was evident when the above-



148 G. Ben-Dor, E. I. Vasiliev, T. Elperin and A. Chpoun

mentioned experimentally recorded hysteresis processes were compared with pre-
dictions based on two-dimensional analytical models (see e.g. Chpoun et al. 1995
and Li et al. 1999) it was claimed by Skews, Vukovic & Draxl (1996), Fomin et
al. (1996), Skews (1997, 1998) and Ivanov et al. (1998a, b) that the above-mentioned
experimentally recorded hysteresis processes in the RR ↔ MR transition were trig-
gered by three-dimensional edge effects, and hence could not be considered as purely
two-dimensional.

For this reason it was decided to design an experimental set-up by which the
question of whether a hysteresis in the RR ↔ MR transition could exist in a flow
field which, by definition, is free of three-dimensional effects. The experimental set-up
fulfilling this requirement is shown schematically in figure 1(a). An incident converging
straight conical shock wave, i1, was generated using a conical ring with a sharp leading
edge having an angle, θ. This converging straight conical shock wave interacted with
a diverging curvilinear conical shock wave, i2, which was generated by a curvilinear
cone. Owing to the fact that the angle of interaction between these two conical shock
waves depends on the axial distance between the conical ring and the curvilinear cone,
the interaction between these two conical shock waves led to the formation of either
a regular (RR) or a Mach reflection (MR). By continuously moving the curvilinear
cone along the axis of symmetry, the angle of interaction between the two conical
shock waves was changed and as a result both the RR → MR and the MR → RR
transitions were observed and recorded.

Incidentally, Krasil’nikov (1991) investigated experimentally the interaction between
a converging and a diverging quasi-uniform conical shock wave in axisymmetric
supersonic flows using a similar experimental set-up (see figure 1b). Unlike our set-up,
in his a straight rather than a curvilinear cone was used in order to generate the
diverging conical shock wave, i2. As a result, in his experiments, an incident converging
straight conical shock wave interacted with a diverging straight conical shock wave.
The interaction of these two conical shock waves also led to the formation of either
a regular (RR) or a Mach reflection (MR). However, his experimental study was not
aimed at investigating the MR↔ RR transition process.

The experimental and numerical flow fields, obtained when a curvilinear cone is
immersed in a supersonic flow, are shown in figures 2(a) and 2(b), respectively. (Details
regarding both the experimental and the numerical investigations are given in the
following.) The strength of the diverging curvilinear conical shock wave engulfing
the curvilinear cone varies along its front. The diverging curvilinear conical shock
wave, which is very weak near the nose of the curvilinear cone, reaches a maximum
strength just above the edge of the curvilinear cone, at which an expansion fan is
formed. The expansion fan interacts with the diverging curvilinear conical shock
wave and reverses its curvature. Since the strength of the diverging curvilinear conical
shock wave changes along its front, different angles of interaction with the incident
converging straight conical shock wave are encountered as the curvilinear cone is
moved back and forth along the axis of symmetry. As will be shown subsequently,
this change in the angles of interaction leads to transitions between the regular and
the Mach reflection wave configurations obtained. In addition, it will be shown, both
experimentally and numerically, that unlike in the case of planar shock waves where
only one hysteresis loop has been found to exist, in the present case of conical shock
waves there are a few hysteresis loops in the transition process. Preliminary results of
the experimental study can be found in Chpoun et al. (1999). Our full experimental
and numerical results will be presented in the following sections.

It should be stressed here that unlike the above-mentioned cases of reflection of



Hysteresis in the interaction of conical shock waves 149

L

S

õ

(a)

i1
i2

x

y

(b)

i1
i2

(c)

Figure 1. (a) Schematic illustration of the experimental set-up used. An incident conical straight
converging shock wave is generated using a conical ring with a sharp leading edge. This shock wave
then interacts with a diverging conical curvilinear shock wave, which is generated by a curvilinear
mobile cone. (b) Schematic illustration of a similar experimental set-up used by Krasil’nikov (1991)
who experimentally investigated the interaction between converging and diverging quasi-uniform
conical shock waves in axisymmetric supersonic flows. An incident conical straight converging shock
wave is generated using a conical ring with a sharp leading edge. This shock wave then interacts
with a diverging conical straight shock wave, which is generated by a straight mobile cone. (c)
Photograph of the present experimental set-up.
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Figure 2. (a) The experimental and (b) the numerical flow fields, which are obtained when a
curvilinear cone is immersed in a supersonic flow. Note that the strength of the diverging curvilinear
shock wave engulfing the curvilinear cone varies along its front. The diverging curvilinear conical
shock wave, which is very weak near the nose of the cone, reaches a maximum strength just above
the rear edge of the curvilinear cone, at which a conical expansion fan is formed. The conical
expansion fan interacts with the diverging curvilinear conical shock wave and reverses its curvature.

symmetric and asymmetric planar shock waves in two-dimensional plane flows where
the hysteresis was recorded on the plane of symmetry, the hysteresis in the present
axisymmetric flow does not occur on the axis of symmetry, at which an RR is
theoretically impossible (see e.g. Rylov 1990).

2. The experimental study
2.1. The experimental facility

The experiments were conducted in the SH2 hypersonic wind tunnel of Laboratoire
d’Aérothermique du CNRS at Meudon, France. The SH2 wind tunnel is an open jet
facility that produces a uniform airflow in a continuous manner. The wind tunnel
run time is virtually infinite. The nozzle exit diameter is 127 mm. The ratio of the
areas of the exit and the throat sections is 25. Consequently, the test-section-flow
Mach number, based on an inviscid theory, was designed to be exactly 5. However,
due to viscous effects the actual flow Mach number, which was calculated from the
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measurements of the stagnation pressure of the supersonic jet and the stagnation
pressure behind the normal part of the bow shock formed ahead of a Pitot gauge,
was M0 = 4.96. This value was maintained within a variation of less than 1% along
a distance of about 200 mm.

Two-stage volumetric compressors (MPR-RC300 type) supply air at the jet stag-
nation pressure of 8.5 bars. The flow is heated to a stagnation temperature of 453 K
to avoid liquefaction during the expansion in the nozzle. A group of three parallel
pumps (MPR-1000 type) evacuate the air after passing the test section. The jet static
pressure is 13 mmHg and the test chamber pressure varied, depending on the model
size, in the range 4–10 mmHg. This in turn resulted in a slightly under-expanded to a
nearly adapted jet.

The resulting supersonic jet velocity was 870 m s−1 and its temperature and pressure
were 76.5 K and 1683 Pa, respectively. The mass flow rate was about 0.76 kg s−1. The
Reynolds number per unit length, based on these conditions, was 1.28×107 m−1. This
high Reynolds number minimized viscous effects and as a consequence the experi-
mental results could be considered suitable for comparison with inviscid theories. For
example, the boundary layer thickness at the end of a 100 mm long flat plate at zero
angle of incidence was about 0.5 mm.

For flow visualization a colour schlieren photography system was employed. The
colour pictures were obtained using a CCD camera, which was connected simultane-
ously to a video recorder and to a PC monitored digital picture acquisition system.
For each run a video movie and a sequence of digital pictures were obtained.

The recent experimental investigations of the hysteresis in the RR↔MR transition
by Chpoun et al. (1995), Chpoun & Lengrand (1997), Li et al. (1999) and Chpoun et
al. (1999) were conducted on the same facility.

2.2. The experimental set-up

The specific experimental set-up for the present investigation is shown schematically
in figure 1(a). A photograph showing both the conical ring and the curvilinear cone
is shown in figure 1(c). The 70 mm in diameter and 28 mm wide conical ring was
placed in the centre of the 127 mm supersonic jet, emanating from the wind tunnel.
The head angle of the conical ring was θ = 8.5◦. The shape of the curvilinear cone
was y(x) = 0.000115x3 + 0.002717x2 + 0.08749x (x and y are in mm). This shape led
to a slope of 5◦ at the nose of the curvilinear cone and a slope of 35◦ at its rear
edge. These values were chosen in order to promote both the regular (RR) and the
Mach reflection (MR) wave configurations. (Note that this geometry led to a cone
with a very fine nose of which about 0.5–1 mm was inevitably chopped off during its
manufacturing process.) The base diameter and the length (height) of the curvilinear
cone were 30.4 mm and 40 mm, respectively. Both the conical ring and the curvilinear
cone were manufactured from brass using CNC machine tools.

The curvilinear cone was mounted on a rod, which was perfectly aligned with
the axis of symmetry. The rod was connected to a three-axis motorized traverse
device. The curvilinear cone could be moved, by means of this motor, back and forth
along the axis of symmetry with a velocity equal to 0.22 mm s−1. (For this reason the
curvilinear cone will be referred to in the following as the mobile cone.) A digital
transducer recorded the position of the mobile cone.

As mentioned earlier, the displacement of the mobile cone resulted in a change
in the angle of interaction between the incident converging straight conical, i1, and
the incident diverging curvilinear conical, i2, shock waves. This in turn resulted
in different shock wave reflection wave configurations. For convenience, a non-
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dimensional distance, X = S/L, will be used in the following presentation. As shown
in figure 1(a), S is the distance between the entrance cross-section of the conical ring
and the nose of the mobile cone, and L (= 28 mm) is the width of the conical ring.
Using this definition, the coordinates of the entrance and the exit cross-sections of
the conical ring are X = 0 and X = 1, respectively.

2.3. The experimental results

A sequence of 10 frames taken from one of the experimentally recorded videotapes
is shown in figure 3. The sequence shows the evolution of the wave pattern during
the shift of the mobile cone in the course of changing X: 1.56 → 0.70 → 1.68. Three
different wave patterns are seen in figure 3. At this stage, they will be termed, for
simplicity, as Types A, B and C (see figure 6 and subsequent discussion).

From the initial position (frame a) with coordinate X = 1.56 the mobile cone was
shifted slowly with the velocity of 0.22 mm s−1 along the axis of symmetry towards
the conical ring. Whenever a drastic change was seen to occur, the mobile cone was
stopped and the flow was allowed to stabilize. Type A wave patterns are seen near
the mobile cone in frames (a) to (d). The Type A wave pattern consists of a straight
incident diverging conical shock wave attached to the nose of the mobile cone. This
interacts with the converging straight conical shock wave, which is generated by the
conical ring. A schematic illustration of a Type A wave pattern, shown in figure 3(a)
to (d), is shown in figure 4(a). As a result of the boundary layer separation, a large
slow re-circulation zone is induced near the surface of the mobile cone. The slow
re-circulation zone is the mechanism supporting the straight incident diverging conical
shock wave attached to the nose of the mobile cone. In figure 4(a), i1 and i2 are the
converging and the diverging incident conical shock waves, respectively, r1 and r2 are
the reflected fronts of i1 and i2 after their interaction, d is the shock wave formed by
the flow over the rear edge of the mobile cone (point A), s.f. denotes the separated
flow zone with the slow re-circulation, and t.d. is a tangential discontinuities. The
interaction of this tangential discontinuity with the reflected shock wave, r2, results
in a rarefaction wave, which is seen to interact with the reflected shock wave, r1. The
existence of the separated flow zone indicates that viscous effects play an important
role in the formation of the Type A wave pattern. (As will be shown subsequently, the
Euler code, which was applied in the course of the present study, failed, as expected,
to reproduce the viscous-dependent Type A wave configuration. However, Burstchell
et al. (2001), who recently simulated the present case using a Navier–Stokes code, did
succeed in obtaining the above described Type A wave configuration.)

When the mobile cone is shifted from X = 0.86 (figure 3d) to X = 0.70 (figure 3e) the
wave configuration changes suddenly from Type A to Type B. This transition involved
the reattachment of the boundary layer and the disappearance of the separated zone.
As a result the incident shock wave, attached to the nose of the mobile cone, is
suddenly changed from a strong straight incident diverging conical shock wave to a
weak incident diverging curvilinear conical shock wave, which was discussed earlier
when figure 2 was introduced. In addition, a Mach stem, m, is formed between the
converging straight conical shock wave, i1, and the newly formed weak diverging
curvilinear conical shock wave, i2. The Type B wave configuration shown in frame
(e), consists essentially of two triple points, which share the same Mach stem (see
figure 4b and subsequent discussion). This transition, which will be referred to as
Type A→ Type B transition, occurred at X ≈ 0.78.

The subsequent figures 3(f–j) correspond to the shift of the mobile cone in the
reverse direction. Two transitions in the flow pattern were encountered, in the course of
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Figure 3. Experimental photographs illustrating the existence of a hysteresis loop in the interaction
of two conical shock waves. The hysteresis consists of three different types of wave configuration:
a Type A wave configuration is seen in (a), (b), (c), (d) and (j); a Type B wave configuration is seen
in (e), (f), (g) and (h); a Type C wave configuration is seen in frame (i).

shifting the mobile cone from X = 0.70 (frame e) to X = 1.68 (frame j). On shifting it
from X = 0.70 (frame e) to X = 1.29 (frame h) the Mach stem continuously decreased
until it disappeared between X = 1.29 (frame h) and X = 1.56 (frame i), and the Type
B wave pattern changed to another wave pattern, Type C. This transition, which will
be referred to in the following as Type B→ Type C transition, occurred at X ≈ 1.38.
The Type C wave pattern consists of an incident converging straight conical shock
wave, i1, which interacts with the incident weak diverging curvilinear conical shock
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Figure 4. Schematic illustration of the various wave configurations which were obtained in the
course of the experimental study. (a) A Type A wave configuration. A slow re-circulation zone exists
near the surface of the mobile cone, which ensures the existence of the strong diverging conical
shock wave attached to the nose of the mobile cone. The converging and the strong diverging
incident conical shock waves, are i1 and i2, respectively; r1 and r2, the refracted fronts of i1 and
i2 after their interaction, are in fact the reflected shock waves, d is the shock wave formed by the
flow over the shoulder (point A) of the mobile cone, s.f. denotes a separated flow region with slow
re-circulation, t.d is a tangential discontinuity. The interaction of this tangential discontinuity with
the reflected shock wave, r2, results in a rarefaction wave, which is seen to interact with the reflected
shock wave, r1; (b) a Type B wave configuration. The two Mach reflection wave configurations
have a common Mach stem. (c) A Type C wave configuration. The wave configuration consists
of an incident converging conical shock wave, i1, generated by the conical ring, an incident weak
diverging conical shock wave, i2, generated by the mobile cone, and two refracted shock waves,
r1 and r2. Note that the refracted shock wave emanating from the interaction point towards the
surface of the mobile cone reflects from the surface of the mobile cone as a regular reflection.

wave, i2. The interaction results in two refracted shock waves, r1 and r2 (see figure 4c
and subsequent discussion). The r2 shock wave is seen to reflect from the surface
of the mobile cone as a regular reflection, RR. On shifting the mobile cone from
X = 1.56 (frame i) to X = 1.68 (frame j) the boundary layer was separated from
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the surface of the mobile cone. As a result, the incident shock wave, attached to the
nose of the mobile cone, suddenly changed from a weak diverging curvilinear conical
shock wave to a strong diverging straight conical shock wave, and a flow pattern
with a separated flow zone, similar to that shown in frame (a) was formed again. This
transition, which will be referred to in the following as Type C→ Type A transition,
occurred at X ≈ 1.61.

Note that the pairs of frames (a, i), (b, h), (c, g) and (d, f), which correspond to
the same X-position of the mobile cone, clearly demonstrate the existence of two
different wave patterns for the same flow conditions. The entire set of frames in
figure 3 provides clear experimental evidence for the existence of a hysteresis process,
which consists of the following three transitions: Type A → Type B at X ≈ 0.78 on
decreasing X, Type B→ Type C at X ≈ 1.38 on increasing X, and Type C→ Type A
at X ≈ 1.61 on increasing X. The hysteresis loop can be summarized as:

Type A
X≈0.78−→ Type B

X≈1.38−→ Type C
X≈1.61−→ Type A.

As found in the course of the present experimental investigation the Type B→ Type C
transition at X ≈ 1.38 (between frames h and i in figure 3) on increasing X, was
the origin of an additional internal hysteresis loop. In order to detect this loop in
some series of the experiments, immediately after encountering the Type B→ Type C
transition, at X ≈ 1.38, the mobile cone was stopped and its shifting direction was
reversed.

A sequence of eight experimental frames corresponding to this case is shown in
figure 5. The coordinate of the mobile cone was changed in the X-direction: 1.39→
1.12 → 1.39. Two transitions of the wave pattern are evident. A Type C → Type B
transition takes place at X ≈ 1.16, when X is changed from 1.20 (frame c) to 1.12
(frame d) and an opposite Type B→ Type C transition takes place at X ≈ 1.38, when
X is changed from 1.37 (frame g) to 1.39 (frame h). It should be noted here that,
based on the experiments, the Type B→ Type C transition (between frames g and h)
occurred when the Mach stem had a finite height. As will be shown subsequently, this
was not the case in the inviscid numerical simulations, where the Mach stem decreased
continuously until it vanished at the Type B → Type C transition. Probably, viscous
effects behind the Mach stem are the cause for this peculiar behaviour. It is noted
again that the Type C ↔ Type B hysteresis loop, shown in figure 5, is an internal
hysteresis loop of the major hysteresis loop shown in figure 3. This internal hysteresis
loop can be summarized as:

Type C
X≈1.16−→ Type B

X≈1.38−→ Type C.

Finally, it should be noted here that figure 3(b, h) and figure 5(b, f), which cor-
respond to the same X-position of the mobile cone, clearly demonstrate that three
different shock wave patterns, Type A, Type B and Type C, were obtained experi-
mentally, for the same flow conditions.

These three different wave patterns, namely, Type A, Type B and Type C, are
shown schematically in figures 4(a), 4(b) and 4(c), respectively. The Type B wave
configuration, shown in figure 4(b), is similar to the overall Mach reflection wave
configuration in the interaction of plane shock waves (see Li et al. 1999). It consists
of two triple points and hence two Mach-reflection wave configurations. The two
Mach-reflection wave configurations have a common Mach stem. For this reason the
Type B wave configuration will be referred to, in the following, as an overall Mach
reflection wave configuration, oMR. In the Type C wave configuration, figure 4(c), the
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Figure 5. Experimental photographs illustrating the existence of an internal hysteresis loop in
the interaction of two conical shock waves. The hysteresis consists of two different types of
wave configuration: a Type C wave configuration is seen in (a), (b), (c) and (h); a Type B wave
configuration is seen in (e), (f) and (g).

converging straight conical shock wave, i1, is seen to interact with the weak diverging
curvilinear conical shock wave, i2, and to result in two refracted shock waves, r1 and
r2. The Type C wave configuration is similar to the overall regular reflection wave
configuration in the interaction of plane shock waves (see Li et al. 1999). For this
reason the Type C wave configuration will be referred to, in the following, as an
overall regular reflection wave configuration, oRR. As can be seen in figure 4(c), the
r2 shock wave reflects from the surface of the mobile cone as a regular reflection, RR.

The double-loop hysteresis described above is shown in figure 6. The frames shown
in figure 3 show a viscous-dependent major hysteresis loop, which is accompanied by
three transitions:
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Figure 6. The experimentally obtained double-loop hysteresis. The experimentally recorded
frames, which are shown in figures 3 and 5, are marked along the loops.

Type A→ Type B transition at X ≈ 0.78;
Type B→ Type C transition at X ≈ 1.38; and
Type C→ Type A transition at X ≈ 1.61.
Similarly, the frames shown in figure 5 describe an internal (non-viscous-dependent)

hysteresis loop with two transitions.
Type B→ Type C (or oMR→ oRR) transition at X ≈ 1.38 ; and a reversed
Type C→ Type B (or oRR→ oMR) transition at X ≈ 1.16.
The frames shown in figures 3 and 5 are marked on figure 6, labelled according to

the figure number.
Not only do the experimental results provide, for the first time, a clear proof of

the existence of a hysteresis phenomenon in the oRR ↔ oMR transition in a flow
field (not planar) which by definition is free of three-dimensional effects, they also
reveal a complex double-loop hysteresis. As will be shown subsequently, the non-
viscous-dependent internal hysteresis loop was simulated in the course of our detailed
inviscid numerical investigation. In addition, multiple hysteresis loops, associated with
the interaction between the shock wave configuration and the rear edge of the mobile
cone were also observed.

3. The numerical study
3.1. The numerical method

The problem was solved using an Eulerian code for an ideal gas with γ = 1.4.
The stationary solutions were determined numerically using a W-modification of the
Godunov method with a second-order accuracy both in space and time. A detailed
description of the W-modification of the Godunov method can be found in Vasiliev
(1996). General details of the code can be also found in Ben-Dor, Elperin & Vasiliev
(1999).

Godunov’s method (as well as all the other methods which employ the solution
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Figure 7. Illustration of the computational domain and the numerical grid for one of the
calculations.

of the Riemann problem) is very well suited for tracking shock wave fronts. Con-
sequently, a procedure for tracking the Mach stem was applied in the course of
the present numerical calculations. This procedure transformed the mesh during the
calculations in such a manner that one of the vertical boundary lines of the mesh
coincided with the Mach stem. It can be seen, in figure 7, where the mesh that was
used in one of the calculations is shown, that the vertical boundary lines of the mesh
became curvilinear as a result of tracking the Mach stem. The numerical details of
the procedure for tracking a shock wave front, i.e. transformation of the numerical
mesh in such a manner that one of the vertical boundary lines of the mesh would
coincide with the Mach stem, are described in Vasiliev (1999).

The tracking of the Mach stem resulted in a situation in which the mesh became
movable. The most important reason for using a movable mesh was that the curvilinear
cone moved during the calculations. The location of the mobile cone was changed in
the range 0 6 X 6 2.2 with increments of ∆X = 0.02. The time interval for changing
X was composed of two parts: a transitional-time interval, 0.6L/a0, and a time
interval required for reaching a stationary solution, 4L/a0, where a0 is the speed of
sound of the free stream. These time intervals were based on preliminary calculations.
The criterion for determining whether a stationary solution had been reached was the
stabilization of the location of the Mach stem. It was assumed that the flow attained
a stationary state when the velocity at the centre of the Mach stem, Dstem, fulfilled the
condition |Dstem| 6 0.001a0 during a time interval allocated for reaching a stationary
solution. If at the end of the allocated time interval this condition was not met, the
calculations continued.

As mentioned earlier, the numerical calculations were performed using a curvilinear
moving grid, similar to that shown in figure 7. In order to increase the accuracy of
the calculations the mesh was refined in the region where the interaction took place.
The area occupied by the grids, i.e. ABCDEFGA, was, in fact, the control volume.
For convenience, straight lines emerging from the edge of the conical ring (BC) and
the back edge of the mobile cone (CD) bound the computational domain. This could
be done since the flow beyond these two straight lines was supersonic and hence
perturbations from these artificial boundaries could not enter the control volume.
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Grid: 420 × 130

Grid: 640 × 200

Grid: 960 × 300

Figure 8. Constant flow Mach number contours as obtained using different grids. The shaded regions
are subsonic. The calculations justify the use of ‘soft’ boundary conditions in the calculations. In
addition, the results justify the use of a 640× 200 mesh in most of the calculations.

This is verified in figure 8 where flow-Mach-number contour lines, in the vicinity of
the edge of the mobile cone, as obtained using different grids are shown. The subsonic
parts of the flow fields are shaded. The flow is supersonic in the parts of the flow
fields that are not shaded (including the exit boundary). This justifies the subsequently
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mentioned use of ‘soft’ boundary conditions in our calculations (i.e. all the derivatives
with respect to the x-coordinate were set to be zero).

It is also evident from figure 8 that refining the calculation grid affected the
resolution of the discontinuities (the shock waves, the contact boundary of the
wall jet and the contact surface emanating from the upper triple point). The mesh
refinement, in the region with the smooth flow, hardly changed the results. Note that
the locations of the various shock waves and the other quantitative characteristics
of the flow pattern almost coincide for the three different meshes shown in figure 8.
Most of the calculations, in the course of the present study, were performed using a
mesh of 640× 200 (in some cases, however, a mesh of 760× 240 was used).

The motion of the mobile cone was also taken into account by the boundary
conditions at its surface. The normal component of the gas velocity was set to be
equal to the normal component of the surface velocity of the mobile cone. Solid
boundary conditions, i.e. vn = 0 were used along the surface of the conical ring (AB
in figure 7) and vn = wn along the surface of the mobile cone (DEF), where wn is
the normal component of the velocity of the surface of the mobile cone. Thus in
the calculations, as in the experiments, the position of the mobile cone was varied
smoothly with additional time delays to allow the flow to settle.

In summary the imposed boundary conditions were as follows (see figure 7):
uniform flow with M0 = 4.96 along the left-hand boundary (GA), i.e. the inlet;
solid boundary conditions along the surfaces of the conical ring (AB) and the

mobile cone (DEF);
‘soft’ boundary conditions along the right-hand boundary (CD), i.e. the outlet;
solid wall boundary conditions along the boundary BB′ and ‘soft’ boundary condi-

tions along the boundary B′C, where B′ divides the boundary BC at about 1/3 and
2/3. It should be noted that, based on figure 8, ‘soft’ boundary conditions could have
been imposed along the entire upper boundary (BC) but then it would have taken a
longer time to reach a stationary solution. The only difference between the ‘soft’ and
the solid wall boundary conditions is the velocity. In the ‘soft’ boundary conditions
the derivatives of the velocity are set to be equal to zero.

3.2. The numerical results

As mentioned earlier the present numerical investigation, which was based on an
inviscid code, failed, as expected, to record the viscous-dependent major hysteresis
loop, shown in figure 3. However, the present numerical investigation did succeed in
simulating the non-viscous-dependent internal hysteresis loop, shown in figure 5. In
addition, a multi-loop hysteresis of the flow patterns was also found in the course of
the numerical investigation.

The numerical simulation was done in the following way. The mobile cone was first
put at X = 0 and the numerical code was run until a stable situation was reached.
At this stage the mobile cone was slightly shifted, a distance of ∆X = 0.02 from the
conical ring (i.e. X was increased), and the code was run until a new stable solution
was again attained. This procedure was repeated until the location X = 2.2 was
reached. At this point the direction of shifting the mobile cone was reversed (i.e. X
was decreased) until the initial situation, X = 0, was again reached. (Note that since
∆X = 0.02, shifting the mobile cone from X = 0 to X = 2.2 and then back to X = 0
meant that a stationary solution was fully calculated at 220 positions.)

The above procedure resulted in the overall multi-loop hysteresis, which is shown
in figure 9 in the (X,Hm)-plane. Here Hm = hm/L is the non-dimensional length of
the Mach stem, where hm is the length of the Mach stem, i.e. the distance between
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Figure 9. The numerically obtained multi-loop-hysteresis. The loop consists of two types of
hysteresis: one major one S-N-O-P-R-S and four minor ones B-C-D-W-B, E-F-G-V-E, H-I-J-U-H
and K-L-M-T-K.

the two triple points when the resulted overall wave configuration is oMR (similar to
the one shown in figure 4b). Evidently, for an oRR wave configuration (see figure 4c)
Hm = 0.

The stable flow states (see figure 9), which were encountered when the mobile
cone was shifted along the X = 0 → 2.2 path and the reversed X = 2.2 → 0 path
were A-B-C-D-E-F-G-H-I-J-K-L-M-N-O-P-Q and Q-P-R-S-M-T-K-J-U-H-G-V-E-
D-W-B-A, respectively. These two different paths of stable flow states consist, as will
be shown subsequently, of two different types of hysteresis loops. The first one, the
major one, which is similar to the one obtained experimentally (see figure 5), consists
of two different overall shock wave configurations, an oMR (figure 4b) and an oRR
(figure 4c), for the same flow conditions. It is described, in figure 9, by the loop
S-N-O-P-R-S. The second one, the minor one, has not been recorded experimentally,
probably because of the poor experimental resolution along the surface of the mobile
cone. It consists of only oMR shock wave configurations (figure 4b), but different
flow patterns for the same flow conditions. Figure 9 reveals four such minor hysteresis
loops, namely B-C-D-W-B, E-F-G-V-E, H-I-J-U-H and K-L-M-T-K.

These two different types of hysteresis loops will be presented in the following:
the major one, which is the more important one, i.e. the S-N-O-P-R-S loop, will be
treated first. The numerical results will be presented using lines of constant density
(i.e. isopycnics).
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The major S-N-O-P-R-S hysteresis loop

The major S-N-O-P-R-S hysteresis loop is shown in figure 10. The stable numerical
flow patterns, on shifting X from 1.3 to 0.7 and back to 1.3, are presented. As
mentioned earlier this hysteresis, which is non-viscous dependent, is probably driven
by a dual-solution-domain mechanism. The calculated wave configuration for X = 1.3
is shown in figure 10(a). It is an oRR, similar to the one shown schematically
in figure 4(c). The incident converging straight conical and the incident diverging
curvilinear conical shock waves intersect each other in a regular manner. The refracted
converging conical shock wave reflects from the surface of the mobile cone as a regular
reflection, RR. The reflected shock wave of this RR interacts with the refracted
diverging curvilinear conical shock wave. When X is decreased to 0.80 (see figure 10b)
the reflection of the transmitted converging conical shock wave from the surface
of the mobile cone changes from a regular reflection, RR, to a Mach reflection,
MR. Upon a further decrease in X to 0.70 (see figure 10c) a drastic change occurs.
The overall wave configuration changes suddenly from an oRR, to an oMR. If the
direction of shifting the mobile cone is now reversed and X is increased back towards
its initial value of X = 1.3 , the flow patterns shown in figures 10(d) to 10(e) are
found. The length of the Mach stem of the oMR wave configurations decreases
gradually. In addition, it is evident from figures 10(c) to 10(e) that once an oMR is
formed the interaction of the wave reflected from the surface of the mobile cone and
the contact surface results in a special structure of ‘humps’ of the contact surface.
(It is important to note here that a very similar wave configuration, including the
structure of humps, has been obtained recently by Olejniczak, Wright & Candler
(1997) who investigated numerically the interaction on double-wedge geometries in a
two-dimensional planar flow.) The number of humps of the contact surface is seen
to increase as X is increased. A close inspection of figure 10 indicates that there
are three full humps for X = 0.70 and 0.80 (figures 10c and 10d, respectively) and
seven full humps for X = 1.3) (figure 10e). The two pairs shown in figures 10 (b, d)
(for X = 0.8) and 10(a, e) (for X = 1.3), which show different overall shock wave
configurations for identical flow conditions, provide clear evidence of the hysteresis
phenomenon. The subsonic flow regions are shaded in figures 10(a) to 10(e). The fact
that supersonic boundary conditions are present for all the downstream boundaries
clearly verifies that the above-mentioned pairs (i.e. b, d and a, e) are indeed different
flow configurations that result from a hysteresis effect.

As can be seen in figure 10 the oRR → oMR transition, i.e. the transition from
an overall RR wave configuration (figure 10b) to an overall MR wave configuration
(figure 10c), takes place at X ≈ 0.75.

A remark regarding the ‘wiggles’ in the contours plotted (see e.g. figure 10), which
originate from the reflected oblique shock in the supersonic portion of the flow field,
is needed here. Although these ‘wiggles’ give an impression that the quality of the
numerical results is impaired, one should note that such fluctuations are characteristic
for schemes of second order-accuracy in the following situations:

(i) slowly moving (with respect to the mesh) strong shock waves in one-dimensional
unsteady flows; and (ii) strong shock waves with small angles between the shock
fronts and the mesh lines in two-dimensional steady flows.
The latter situation is encountered in the present calculations. There are quite a few
studies which purport to diminish this undesirable numerical effect (see e.g. Arora
& Roe 1997; Karni & Ćanić 1997; Jin & Liu 1997; Sokolov et al. 1999). In these
studies some efficient methods for damping the ‘wiggles’ in second-order schemes were
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(a) X = 1.3 (e) X = 1.3

(b) X = 0.80 (d) X = 0.80

(c) X = 0.70

Figure 10. Numerical results illustrating the major S-N-O-P-R-S hysteresis loop of figure 9. The
subsonic flow regions are shaded.

developed for one-dimensional flows while the problem for the two-dimensional flows
is still unsolved. For this reason it is concluded by Arora & Roe (1997) that ‘It is quite
possible that there is, in general, no completely satisfactory solution to this problem’.
In the present study most of the ‘wiggles’ were eliminated by using a procedure for
tracking the Mach stem. Further smoothing could be achieved by using artificial
viscosity. However, this would have reduced the accuracy of the scheme to that of a
first-order one and would have smeared the contact surfaces. Since it was believed
that this is unacceptable it was decided to keep low-dissipation of the scheme along
the streamlines. As a result, small density inhomogeneities, which were formed at the
reflected wave front, were conserved along the trajectories of the particles while they
attenuated quite strongly along other directions and also for other flow parameters
such as pressure.

Finally, it is important to note that the propagation of small inhomogeneities
along the streamlines behind the reflected shock wave has absolutely no effect on
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the phenomenon investigated since all the principal gasdynamic effects occur in the
region near the cone surface and in the subsonic region behind the Mach stem.

Comparison of the simulation and the experimental results

Two hysteresis loops were detected in the course of the present experimental
investigation: the viscous-dependent hysteresis loop (figure 3) and an internal non-
viscous-dependent hysteresis loop (figure 5). Since the numerical simulations were
performed with an inviscid code, the main attention in the calculations was paid
to investigating the non-viscous-dependent hysteresis loop. The numerical hysteresis,
shown in figure 10, has features both in common and distinct from the experimental
hysteresis that was shown in figure 5. On shifting the mobile cone towards the
conical ring (i.e. reducing X) the oRR → oMR transition takes place: see the
change in the wave configurations on moving from frame (c) to frame (d) in figure 5
(the experimental hysteresis) and from frame (b) to frame (c) in figure 10 (the
numerical hysteresis). However, in the numerical calculations the transition occurred
considerably later than in the experiments. This difference can be attributed to the
boundary layers inside the conical ring and along the surface of the mobile cone. These
boundary layers change the angles between the interacting incident shock waves, and
affect the flow near the surface of the mobile cone and downstream of the interaction
point (e.g. local separation zones in the boundary layer). The latter conclusion is
supported by the fact that while in the numerical calculations the oRR → oMR
transition could not be detected for conical rings having an angle smaller than
θ = 10.5◦, in the experiments the oRR → oMR transition was recorded with a
conical ring having an angle θ = 8.5◦. The reversed oMR → oRR transition when
the mobile cone was shifted away from the conical ring occurred in the simulation at
a larger value of X than in the experiments. In summary, probably due to a viscous
effect, the numerical dual-solution-induced hysteresis loop was found to be larger
than the experimental one.

As can be seen in figure 9, the major S-N-O-P-R-S hysteresis loop consists of
two transitions: the oRR → oMR transition between points R and S, which is
associated with the sudden appearance of a finite-length Mach stem, and the opposite
oMR → oRR transition at point P, which is seen to occur where the Mach stem
vanishes, i.e. Hm → 0.

The inviscid numerical simulation failed, as expected, to reproduce the viscous-
dependent hysteresis loop shown in figure 5. However, the detailed numerical inves-
tigation using the inviscid model revealed fine hysteresis loops, which were caused
by the interaction of the above-mentioned humps associated with the oMR wave
configuration with the rear edge of the mobile cone. These hysteresis loops will be
discussed subsequently.

The oMR wave configuration (see e.g. figure 10c) consists of two MR wave
configurations. The upper one is an inverse-Mach reflection, InMR, and the lower one
is a direct-Mach reflection, DiMR (for details regarding the inverse-Mach reflection
see Ben-Dor 1991). The reflected shock wave of the lower MR is reflected from the
surface of the mobile cone as a regular reflection, RR. The reflected shock wave of
this RR interacted with the contact surface of the lower MR. Since the flow field was
subsonic above the contact surface and supersonic below it the reflection from the
contact surface, of a wave approaching from the supersonic side, was almost total,
i.e. shock and compression waves reflected as expansion waves and expansion waves
reflected as compression waves. When these waves reflected from the solid surface of
the mobile cone they did not change their nature, i.e. expansion waves reflected as
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Figure 11. Pressure profiles along the surface of the curvilinear mobile cone: (a) for an oRR at
X = 0.76 (similar to that shown in figure 10b), (b) for an oMR at X = 0.76 (similar to that shown
in figure 10c). The pressure peaks correspond to the edges of the full humps of the contact surface.

expansion waves and compression waves reflected as compression waves. As a result
an almost periodic structure of humps of the contact surface was formed. Three full
stable humps are seen in figure 10(c). Five, seven and nine humps were obtained in
the calculations (not shown here) for X = 1.0, X = 1.25 and X = 1.4, respectively. (It
is important to note here again that a very similar wave configuration including the
special structure of humps was obtained by Olejniczak et al. 1997 who investigated
numerically the shock interaction on double-wedge geometries in a two-dimensional
planar flow, compare figure 10(c) with figure 13(b) in Olejniczak et al. 1997.)

As will be shown subsequently, the X-coordinate of the mobile cone when a given
hump detached from the rear edge of the mobile cone was found to be different from
the X-coordinate of the mobile cone when the same hump reattached. This in turn
led to the identification of additional hysteresis loops in which the wave configuration
was always an oMR but the flow patterns along the surface of the mobile cone
were different. These minor hysteresis loops are shown in figure 9 as B-C-D-W-B,
E-F-G-V-E, H-I-J-U-H and K-L-M-T-K.

The pressure distributions along the surface of the mobile cone for the case with
an oRR wave configuration (at X = 0.76) and for the case with an oMR wave
configuration (at X = 0.76) are shown in figures 11(a) and 11(b), respectively. A
dramatic change in the pressure profile along the surface of the mobile cone is
evident. The single pressure peak, which is seen in figure 11(a), is associated with the
Mach stem of the MR wave configuration (see e.g. figure 10b). The four pressure
peaks, which are seen in figure 11(b), are associated with the four edges of the three
humps of the contact surface (see e.g. figure 10c). It is evident from figure 11(b) that
the first pressure peak exceeds 100 times the ambient pressure. It is also seen that the
pressures are about 10 times larger at the edges of the humps of the contact surface
than at their centres. The pressure peaks are seen to decrease, by about 5–7%, from
hump to hump. It is interesting to note that pressure profiles similar to those shown
in figure 11(b) were obtained in the above-mentioned study of Olejniczak et al. (1997)
in which, as indicated earlier, similar wave configurations were obtained. In a typical
calculation presented (see figure 14 in Olejniczak et al. 1997) the pressures were about
250–400 times larger at the edges of the humps of the contact surface than at their
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centres. It is important to note that the narrowly localized alternating pressure peaks
could impose considerable dynamic and thermal loads on the surface of the mobile
cone.

The minor B-C-D-W-B, E-F-G-V-E, H-I-J-U-H and K-L-M-T-K hysteresis loops

As mentioned earlier, the location of the mobile cone when a given hump detached
from the rear edge of the mobile cone was found to be different from the location
of the mobile cone when the same hump reattached. The attachment/detachment
mechanism led to the identification of additional minor hysteresis loops in which the
wave configuration was always an overall Mach reflection, oMR, but the flow patterns
along the surface of the mobile cone were different. These minor hysteresis loops,
which are shown in figure 9 as B-C-D-W-B, E-F-G-V-E, H-I-J-U-H and K-L-M-T-K,
are presented in the following.

The B-C-D-W-B hysteresis loop: The B-C-D-W-B hysteresis loop is shown in fig-
ure 12, where the stable numerical flow patterns, for a variation of X from 0.02 to
0.26 and back to 0.02, are presented. At X = 0.02 (figure 12a) an oMR wave configu-
ration is obtained. It should be noted that, unlike the previously discussed oMR wave
configurations where the reflected shock wave of the lower MR interacted with the
mobile cone upstream of its rear edge, here it interacts with the surface of the mobile
cone downstream of its rear edge. An inspection of the orientation of the upper
contact surface indicates that the upper Mach reflection is an inverse-Mach reflection,
InMR. When X is increased (see figures 12b and 12c) the Mach stem connecting the
two triple points moves upstream and its length increases. Note that a situation in
which the reflected shock wave of the lower MR touches the rear edge of the mobile
cone is reached in the vicinity of X = 0.20 (see figure 12c). An increase of X beyond
this value results in a sudden jump of the Mach stem upstream which is associated
with a sudden increase in the length of the Mach stem, as shown in figure 12(d) for
X = 0.26. The sudden transition results in a wave configuration in which the reflected
shock wave of the lower MR reflects as an RR from the surface of the mobile cone.
Note also that the contact surface of the upper MR, i.e. the InMR, has straightened
out. When X is decreased back to X = 0.02 the stable solutions shown in figures 12(e)
to 12(g) are obtained. The two pairs (c, e) (for X = 0.20) and (b, f) (for X = 0.12)
which show different overall wave configurations for identical flow conditions are
clear evidence of the hysteresis. The hysteresis is typified by a sudden increase in the
length of the Mach stem at X ≈ 0.23 and a reversed sudden decrease in the length
of the Mach stem at X ≈ 0.05. The calculations revealed that the mechanism, which
triggers the sudden transition from an oMR with a short Mach stem (figure 12c) to
an oMR with a much larger Mach stem (figure 12d), is the interaction of the reflected
shock wave of the lower MR with the rear edge of the mobile cone (see figure 12c).
Note that once the transition takes place (see figure 12d) the reflected shock wave of
the lower MR reflects from the surface of the mobile cone as an RR. The reflected
shock wave of this RR interacts with the contact surface of the lower MR. The result
of this interaction is an expansion wave, which hits the surface of the mobile cone
and reflects back towards the contact surface as an expansion wave. The reflected
expansion wave interacts with the contact surface and causes it to turn back towards
the mobile cone. Had X been further increased, as will be shown subsequently, this
turn of the contact surface would have been developed to become the first full hump
of the contact surface. Figures 12(f) and 12(g) indicate that the reverse transition is
driven by the interaction of the above-mentioned expansion wave with the rear edge
of the mobile cone.
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(a) X = 0.02 (g) X = 0.02

(b) X = 0.12 ( f ) X = 0.12

(c) X = 0.20 (e) X = 0.20

(d ) X = 0.26

Figure 12. Numerical results illustrating the minor B-C-D-W-B hysteresis loop of figure 9.

It should be noted here that at least one additional stable wave configuration
exists in the range of X shown in figure 12. This wave configuration, which is
shown in figure 13 for X = 0.10, consists of a regular interaction between the incident
converging straight conical and the incident diverging curvilinear conical shock waves.
The numerical flow pattern shown in figure 13 was obtained artificially by introducing
perturbations into the stationary flow pattern shown in figure 12(a) or 12(g) (i.e. by
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Figure 13. An additional stable wave configuration, which exists in the range of X, which is covered
in figure 12. The wave configuration resembles a regular interaction between the incident converging
straight conical and the incident diverging curvilinear conical shock waves. This numerical flow
pattern was obtained artificially by introducing perturbations into the stationary flow pattern shown
in figure 12(g).

artificially increasing the gas velocity behind the Mach stem) and simultaneously
moving the cone to X = 0.10. The perturbation-driven stable oRR, which is shown
in figure 13, could be obtained in the range 0.04 6 X 6 0.10.

The minor E-F-G-V-E hysteresis loop: The minor E-F-G-V-E hysteresis loop is
shown in figure 14, where the stable numerical flow patterns, for a variation of X
from 0.26 to 0.38 and back to 0.26, are presented. Note that all the upper MRs are
inverted. In addition, the contact surfaces of these InMRs are straight (recall that
the flow is axisymmetric). At X = 0.26 (figure 14a) an oMR is obtained. When X
is increased (see figure 14b) the Mach stem connecting the two triple points moves
upstream and its length increases. The flow patterns in figures 14(a) and 14(b) for
X = 0.26 and 0.34, respectively, are similar to that shown in figure 12(f). A further
increase to X = 0.38 results in the flow pattern shown in figure 14(c), in which the
above-mentioned expansion wave developed a full hump of the contact surface of the
lower MR. When X is decreased back to X = 0.26 the stable flow patterns shown in
figures 14(d) and 14(e) are obtained. The pair (b, d) (for X = 0.34) that shows different
flow patterns for identical flow conditions is clear evidence of the hysteresis, typified
by a sudden increase in the length of the Mach stem at a value of X in the range
0.34 6 X 6 0.38, and a sudden decrease in the length of the Mach stem at a value
of X in the range 0.26 6 X 6 0.30. It is evident from figure 14 that the hysteresis is
driven by a mechanism associated with the attachment/detachment of the first hump
to/from the surface of the mobile cone. For this reason the hysteresis loop, shown in
figure 14, can be termed as 0 hump↔ 1 hump hysteresis.

Based on detailed calculations in this range it is quite clear that the mechanism
that triggers the sudden transition from an oMR with a short Mach stem (figure 14b)
to an oMR with a larger Mach stem (figure 14c) is the interaction of the second
reflected compression wave with the rear edge of the mobile cone. Note that once
the transition takes place a full stable hump of the contact surface is established
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(a) X = 0.26 (e) X = 0.26

(b) X = 0.34 (d ) X = 0.34

(c) X = 0.38

Figure 14. Numerical results illustrating the minor E-F-G-V-E hysteresis loop of figure 9. As can
be seen the hysteresis is associated with the attachment/detachment of the first hump of the contact
surface to/from the surface of the mobile cone.

over the surface of the mobile cone. The 0 hump → 1 hump transition was found to
occur at X ≈ 0.37. The calculations also revealed that the reversed 1 hump→ 0 hump
transition is driven by the interaction of the downstream edge of the first hump of
the contact surface with the rear edge of the mobile cone. The 1 hump → 0 hump
transition was found to occur at X ≈ 0.27.

The minor H-I-J-U-H hysteresis loop: The minor H-I-J-U-H hysteresis loop is shown
in figure 15. The stable numerical flow patterns, for a variation of X from 0.46 to
0.56 and back to 0.46, are presented. At X = 0.46 (figure 15a) an oMR with one full
stable hump of the contact surface is obtained. When X is increased the Mach stem
connecting the two triple points moves upstream and its length increases, until X is
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(a) X = 0.46 (e) X = 0.46

(b) X = 0.48 (d ) X = 0.48

(c) X = 0.56

Figure 15. Numerical results illustrating the minor H-I-J-U-H hysteresis loop of figure 9. As can
be seen the hysteresis is associated with the attachment/detachment of the second hump of the
contact surface to/from the surface of the mobile cone.

increased to X = 0.56 at which the flow pattern shown in figure 15(c), in which the
above-mentioned expansion wave developed two full humps of the contact surface
of the lower MR. When X is decreased back to X = 0.46 the stable flow patterns
shown in figures 15(d) and 15(e) are obtained. The pair (b, d) (for X = 0.48) which
show different overall flow patterns for identical flow conditions is clear evidence
of the hysteresis, typified by a sudden increase in the length of the Mach stem at
X ≈ 0.55 and a sudden decrease in the length of the Mach stem at X ≈ 0.47. It
is evident from figure 15 that the hysteresis is driven by a mechanism associated
with the attachment/detachment of the second hump to/from the surface of the
mobile cone. For this reason the hysteresis loop shown in figure 15 can be termed
a 1 hump ↔ 2 humps hysteresis. Detailed calculations indicated that the mechanism
that triggers the sudden transition from an oMR with a short Mach stem to an
oMR with a larger Mach stem is the interaction of the reflected third compression
wave with the rear edge of the mobile cone. Note that once the transition takes place
two full stable humps of the contact surface are established over the surface of the
mobile cone. The 1 hump → 2 humps transition was found to occur at X ≈ 0.55.
The calculations also revealed that the reversed 2 humps → 1 hump transition is
driven by the interaction of the downstream edge of the second hump of the contact
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(a) X = 0.66 (e) X = 0.66

(b) X = 0.68 (d ) X = 0.68

(c) X = 0.70

Figure 16. Numerical results illustrating the minor K-L-M-T-K hysteresis loop of figure 9. As
can be seen the hysteresis is associated with the attachment/detachment of the third hump of the
contact surface to/from the surface of the mobile cone.

surface with the rear edge of the mobile cone. Based on figure 15(d) and 15(e) the
2 humps→ 1 hump transition occurs at X ≈ 0.47.

The minor K-L-M-T-K hysteresis loop: The minor K-L-M-T-K hysteresis loop is
shown in figure 16, where stable numerical flow patterns, for a variation of X from
0.66 to 0.70 and back to 0.66, are presented. At X = 0.66 (figure 16a) an oMR with two
full stable humps of the contact surface is obtained. When X is increased to X = 0.68
(see figure 16b) the Mach stem connecting the two triple points moves upstream and
its length increases. A further increase to X = 0.70 results in the flow pattern shown
in figure 16(c), in which the above mentioned expansion wave developed three full
humps of the contact surface of the lower MR. When X is decreased back to X = 0.66
the stable flow patterns shown in figures 16(d) and 16(e) are obtained. Similarly to
the two previous cases the pair (b, d) (for X = 0.68), which show different overall flow
patterns for identical flow conditions, is clear evidence of the hysteresis, typified by a
sudden increase in the length of the Mach stem at X ≈ 0.69 and a sudden decrease
in the length of the Mach stem at X ≈ 0.67. It is evident from figure 16 that the
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hysteresis is driven by a mechanism associated with the attachment/detachment of
the third hump to/from the surface of the mobile cone. For this reason the hysteresis
loop shown in figure 16 can be termed a 2 humps↔ 3 humps hysteresis.

Again similarly to the two previous cases, it is quite clear that the mechanism that
triggers the sudden transition from an oMR with a short Mach stem (figure 16b) to an
oMR with a larger Mach stem (figure 16c) is the interaction of the fourth compression
wave with the rear edge of the mobile cone. Note that once the transition takes place
three full stable humps of the contact surface are established over the surface of the
mobile cone (see figure 16c). Consequently, the 2 humps→ 3 humps transition occurs
at X ≈ 0.69. The reversed 3 humps → 2 humps is driven by the interaction of the
downstream edge of the third hump of the contact surface with the rear edge of
the mobile cone. Based on figures 16(d) and 16(e) the 3 humps→ 2 humps transition
occurs at X ≈ 0.67.

4. Discussion and conclusion
The interaction of two conical shock waves, one converging and straight and

the other diverging and curvilinear, in an axisymmetric flow was investigated both
experimentally and numerically.

A double-loop hysteresis was discovered in the course of the experimental inves-
tigation. It consisted of a major loop, associated with the interaction between the
boundary layer and the wave configuration, and a minor loop, associated with the
dual-solution phenomenon, which is known to be non-viscous-dependent. The minor
hysteresis loop was found to be an internal hysteresis loop of the major one. The
experimental results revealed a hysteresis in a flow field that was by definition free of
three-dimensional effects.

The numerical Euler calculations failed, as expected, to detect the viscous-dependent
major hysteresis loop but did succeed in obtaining the non-viscous-dependent minor
hysteresis loop. In addition, multiple minor hysteresis loops, associated with the
interaction between the shock wave configuration and the edge of the curvilinear
mobile cone were also observed. The non-viscous internal hysteresis loop involved
different overall shock wave reflection configurations, and the other minor hysteresis
loops involved MR wave configurations with different flow patterns.

A very interesting phenomenon has been observed in the flow field near the mobile
cone, in the cases in which the overall flow pattern consisted of a Mach reflection
wave configuration. The reflected shock wave, which emerged from the lower triple
point towards the surface of the mobile cone, reflected from it as a regular reflection.
The reflected shock wave of this regular reflection interacted with the contact surface
emerging from the lower triple point. Since the flow field was subsonic above the
contact surface and supersonic below it the reflection from the contact surface, of a
wave from the supersonic side, was almost total, i.e. compression waves reflected as
expansion waves and expansion waves reflected as compression waves. When these
waves reflected from the solid surface of the mobile cone they did not change, i.e.
expansion waves reflected as expansion waves and compression waves reflected as
compression waves. As a result an almost periodic structure of humps of the contact
surface was formed. In fact the structure is similar to that occurring in a supersonic
weakly over-expanded jet (without Mach stems). The only difference was that, in the
present case, the surface of the mobile cone played the role of a ‘symmetric axis’,
and therefore only ‘half’ of the jet was observed. A very similar wave configuration,
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including the structure of humps, was obtained by Olejniczak et al. (1997) who studied
shock interactions with double-wedge geometries in two-dimensional flows.

As a result of the interaction of the contact surface with the alternating compression
and expansion waves, which bounced back and forth between the contact surface and
the surface of the mobile cone, the contact surface developed a structure that consisted
of stable humps: flow patterns consisting of one to nine humps were obtained. It was
shown that the transition and the reversed transition between adjacent structures,
i.e. the appearance/disappearance or attachment/detachment of full stable humps
along the surface of the mobile cone, occurred at different locations on the mobile
cone. This in turn led to a situation in which the phenomenon was associated with
additional minor hysteresis loops, in which the shock wave configuration was always
an overall Mach reflection but the flow patterns were different.

As a result of this flow pattern an interesting focusing process takes place. Pressure
and density peaks developed along the surface of the mobile cone at the successive
edges of the humps of the contact surface (see for example the pressure profile shown
in figure 11b for the case of three humps).

Both the experimental and the numerical results clearly indicated that the investi-
gated shock wave interaction phenomenon is associated with multi hysteresis loops.
Furthermore, the experimental results provided clear evidence of a hysteresis in the
shock wave interaction process in an axisymmetric flow field that absolutely is free
of three-dimensional effects.

It is important to note that the motivation for conducting the numerical investiga-
tion that is reported in this study was the experimental results. Owing to the use of
an inviscid code the code failed, as expected, to obtain the experimentally observed
viscous-dependent hysteresis loop. However, the code did succeed in obtaining the ex-
perimental dual-solution-domain driven hysteresis loop. The differences, which were
found to exist between the experimental and the numerical dual-solution-domain
driven hysteresis loops, were attributed to boundary layer effects along the surface of
the mobile cone. Owing to the poor resolution along the surface of the mobile cone,
the multi minor hysteresis loops, which were found numerically, were not observed
experimentally. Consequently, the present study provides a clear example of the ad-
vantage of numerical simulations over real experiments when very fine details of the
flow field are needed.
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